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De grands défis sociétaux



!Comment éduquer les enfants et les aider à 
construire un monde meilleur et à s’épanouir ?

" Apprendre à apprendre par soi-même

#Curiosité et esprit-critique



Sciences cognitives
modèles pour mieux 
comprendre l’humain

Intelligence 
artificielle

Applications dans le domaine 
de l’éducation et l’assistance 
à la découverte scientifique

Collaborations:
• Psychologie du 

développement
• Neurosciences
• Sciences de l’éducation
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(Frontiers in Neuroscience 2007; IEEE TEC 2007; Trends in Cognitive Science, Nov. 2013; Progress in 
Brain Research, 2016;  Frontiers in Neuroscience, 2014; Scientific Reports, 2016; PNAS, 2016; Nature 
Reviews Neuro. 2018)

Développement d’un cadre théorique et expérimental unifié en psychologie, en 
neurosciences, et en intelligence artificielle

Since the earliest days of psychology and neuroscience, it 
has been recognized that the stream of evidence imping-
ing on sensory receptors is ambiguous and incomplete, 
and animals must use active inference to make sense of 
the world. In vision, which is a dominant sensory modal-
ity in humans and non-human primates, the brain must 
use a retinal input that is 2D, constantly moving and 
ambiguous to infer the true state of a world that is stable, 
3D and populated by meaningful entities. The relative 
insufficiency of the raw sensory input and the conse-
quent need for active interpretation extend to all sensory 
modalities and all types of decision makers and behav-
ioural situations. The efficiency with which biological 
nervous systems satisfy this goal is arguably a crowning 
achievement of evolution; its magnitude is made fully 
apparent by modern artificial intelligence applications 
such as drones or self-driving cars, in which it remains 
a considerable challenge to interpret rich, naturalistic 
sensory streams.

Among the most striking manifestations of active 
interpretation is the fact that, rather than building com-
plete representations of all the information available to 
them, intelligent beings sparsely sample the rich, incom-
ing sensory streams. Sparse sampling is a necessity for 
any limited-capacity organism that can sense much more 
information than it can fully process. Sampling is rou-
tinely manifested in attention and active-sensing behav-
iours, whereby animals inspect — that is, touch, listen, 
whisk or look at — selected sensory cues. In addition, it 
is expressed in intrinsically motivated behaviours such 

as curiosity that reflect animals’ interest in specific topics 
or questions.

Despite the ubiquity and importance of sampling 
strategies, the organization and neural substrates of 
these  strategies remain oddly unexplored. Studies 
of curiosity are relative newcomers to the neuroscience 
field1,2. Similarly, although attention and active sensing 
have been investigated in voluminous literatures, these 
literatures focus on the ways in which attention and 
active sensing modulate other systems after they are 
deployed, rather than on the mechanisms that direct 
attention and generate sampling policies. Therefore, very 
little is known regarding the motives that drive attention 
and curiosity3. How do animals deem some sources of 
information to be more attention-worthy than others? 
How do they decide which stimuli or questions warrant 
investigation and which ones can be safely ignored?

Here, we review a nascent neuroscientific litera-
ture that examines these questions relying on novel 
active-sampling tasks inspired by earlier studies in 
cognitive psychology and the animal-learning litera-
ture (for examples, see REFS4–6). We take an unusually 
integrative approach and focus on the commonalities 
between attention and curiosity and their relationship 
with decision-making, in particular in the learning and 
exploration–exploitation literature. Although attention  
and curiosity each encompass distinct and heterogeneous  
mechanisms and have been discussed in separate litera-
tures, we propose that an integrative approach is appro-
priate at this stage because it highlights a core question 

Towards a neuroscience of active 
sampling and curiosity
Jacqueline Gottlieb1,2,3* and Pierre-Yves Oudeyer4,5

Abstract | In natural behaviour, animals actively interrogate their environments using 
endogenously generated ‘question-and-answer’ strategies. However, in laboratory settings 
participants typically engage with externally imposed stimuli and tasks, and the mechanisms of 
active sampling remain poorly understood. We review a nascent neuroscientific literature that 
examines active-sampling policies and their relation to attention and curiosity. We distinguish 
between information sampling, in which organisms reduce uncertainty relevant to a familiar task ,  
and information search, in which they investigate in an open-ended fashion to discover new 
tasks. We review evidence that both sampling and search depend on individual preferences over 
cognitive states, including attitudes towards uncertainty , learning progress and types of 
information. We propose that, although these preferences are non-instrumental and can on 
occasion interfere with external goals, they are important heuristics that allow organisms  
to cope with the high complexity of both sampling and search, and generate curiosity-driven 
investigations in large, open environments in which rewards are sparse and ex ante unknown.

1Department of Neuroscience, 
Columbia University,  
New York, NY, USA.
2Kavli Institute for Brain 
Science, Columbia University, 
New York, NY, USA.
3Mortimer B. Zuckerman 
Mind Brain Behavior Institute, 
Columbia University,  
New York, NY, USA.
4Inria, Bordeaux, France.
5Ensta ParisTech, Paris, 
France.

*e-mail: jg2141@ 
columbia.edu

https://doi.org/10.1038/ 
s41583-018-0078-0

REVIEWS

NATURE REVIEWS | NEUROSCIENCE

THIS LOOKS INTERESTING
Understanding active sampling 
and curiosity

Sharp wave–ripples
Role in memory retrieval and 
consolidation 

NEUROSCIENCE
December 2018 volume 19 no. 12     
www.nature.com/reviews

J.Gottlieb
(Columbia, NY)

L. Smith
(Indiana Univ.)

C. Kidd
(Stanford)



L’enfant comme un petit scientifique
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Qu’est-ce-qu’une « activité » intéressante ?

Hypothèses:

• Nouveauté ?
• Surprise ?
• Erreurs en prédiction ?
• Difficulté intermédiaire ?
• Progrès en apprentissage ?

Oudeyer, P. Y., & Kaplan, F. (2007). What is intrinsic motivation? A typology of computational approaches. Frontiers in neurorobotics, 1, 6.

è Optimal pour l’apprentissage ET motivant



Génération de curriculums personnalisés pour les enfants?

Projet KidLearn:personnalisation des sequences 
d’apprentissage dans les systèmes tutorés 
intelligents
(Clement et al., Journal of Educational Data Mining, 
2015; in prep.)
https://arxiv.org/abs/1310.3174
https://www.theses.fr/2018BORD0373

• Expérimentations avec > 1000 
enfants (7-8 ans) dans > 30 
écoles de région Aquitaine

https://arxiv.org/abs/1310.3174
https://www.theses.fr/2018BORD0373
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Impact sur l’apprentissage

Curriculum personalisées avec l’IA

Tests avant
et après

Curriculum fait à la main par un expert



Impact motivationnel

Conclusion: personnalisation grâce à l’IA > curriculum fait à la main

EmoScale Motivation Score

*
*

*

*

*

Figure 6. Boxplots presenting the Emotional Scale score on the left and the Motivation score on the right. Students working
with ZCO and PCO show the highest EmoScale scores while students working with ZCO show the highest Motivation score,
followed by PCO ad ZPDES and Predef present the lowest score.

Difference (LSD) and Bonferroni procedure for corrected comparisons.
The main significant effect revealed a difference for the Emotional Scale score between students who have choices

and student without choice (Choice, [F(1,261) = 12.060, p� value = 0.001, h2 = 0.044]). This effect combined with the
examination of marginal means, (Choice: EmoScale mean = 426.05(sd : 183.58), No Choice: EmoScale mean = 338.86(sd :
226.96)) shows that children working with the possibility to choose the object of the exercise feel better than the ones who does
not have the possibility to choose, which suggests they are more satisfied of their leaning experience (visual support on Fig. 6).

Does the possibility to express choice boost motivation ? We also conducted a two-way ANOVA (algo x choice) on the
Motivation score. The algorithm factor includes the two conditions (ZPDES or Predef). And the choice factor includes also two
conditions (with or without choice). The p-value threshold is a = 0.05. Pairwise comparisons are carried out with the Least
Significant Difference (LSD) and Bonferroni procedure for corrected comparisons.

There is no significant effect but we can observe a tendency showing a difference between students who have choices and
student without choice (Choice, [F(1,261) = 3.449, p� value = 0.064, h2 = 0.013]). From this tendency, the examination of
pairwise comparisons reveals a significant difference between ZCO and Predef according to LSD procedure (p�value = 0.034),
but not from Bonferroni procedure (p� value = 0.205). This tendency combined to the examination of margin means (ZCO:
MS mean = 15.353(sd : 0.528), Predef: MS mean = 13.726(sd : 0.553)) seems to support that giving choice allows students
to have a more motivating experience (visual support on Fig. 6).

This fits with the greater positive emotional experience elicited by the choice condition, and more particularly for ZCO
condition.

2.4 Does a positive relation exist between LP-based personalization and subsequent learning performance
and motivation ?

In order to establish a relationship between the learning outcomes and the instructional and motivational of each one of Kidlearn
condition, correlations for each experimental condition (Predefined, PCO, ZPDES, and ZCO) were made between the following
3 measures (table 1) : 1) Learning effectiveness measure (Difference pre-and post-Kidlearn on learning score) ; 2) Learning
progression in Kidlearn (Final activity score defined in section 5.6.3) ; 3) the motivation score.

Importantly, the ZCO condition is the only condition where it is possible to observe positive relations between the actual
instructional effectiveness (i.e., progress post-Kidlearn) and the learning experience with the ITS in terms of both learning
progression and the motivation state (respectively r = .21 and r = .27). Similarly, ZPDES condition induces a positive
relationship between instructional effectiveness and learning progression within the ITS (r = .32). Taken together, these
observed correlations strongly support the link between learning progression enabled by this personalizing algorithm and actual
learning progress.

In contrast, for the PCO condition, no correlation is significant (see table 1). This suggests that there is no link between
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https://www.adaptivmath.fr/ 

Déploiement grande échelle
Adaptiv’Maths disponible 
dans toutes les écoles de 
France !

Ø 8000 exercices
Ø 68 000 classes
Ø 10000 élèves en Italie

https://evidenceb.fr/produits/adaptiv-langue 
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« Muscler » la curiosité en entrainant les enfants à 
poser des questions curieuses

Thèse de Rania Abdelghani 
(collab. Inria Flowers/evidenceB)

2 types d’indices:
Exemples de mots pour 

commencer (indice syntaxique)

Exemples de mots pour 
commencer + exemples de 

réponses nouvelles (indices 
sémantique)

https://arxiv.org/abs/2204.03546 

https://arxiv.org/abs/2204.03546


Two-way mixed anova: F(1,49)=17.87; p=0.0001)

T test: p-value = 0.02, Cohen's d= 0.68

Deux conditions:
• Contrôle: seulement indices syntactiques (27 enfants, 9-10 ans)
• Expérimentale: indices syntaxiques + sémantiques (28 enfants, 9-
10 ans)

Indices générés « à la main »



Evaluer l’impact de l’entrainement sur la capacité à poser 
des questions et la perception de cette capacité

Indices générés par ChatGPT



Enjeux éducatifs des grands modèles de langage



Apprentissage actif et esprit critique



Littératie de l’IA générative:
ChatGPT expliqué aux lycéens, enseignants, parents

http://developmentalsystems.org/chatgpt_en_5_minutes/ 

http://developmentalsystems.org/chatgpt_en_5_minutes/



